
SANDIA REPORT
SAND2009-3969
Unlimited Release
Printed Jine 2009

Mathematical and High-Level
Overview of MOOCHO

The Multifunctional Object-Oriented
arCHitecture for Optimization

Roscoe A. Bartlett

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2009-3969
Unlimited Release
Printed Jine 2009

Mathematical and High-Level Overview of
MOOCHO

The Multifunctional Object-Oriented arCHitecture
for Optimization

Roscoe A. Bartlett
Department of Optimization and Uncertainty Estimation

Sandia National Laboratories1, Albuquerque NM 87185 USA,

Abstract

MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) is a
object-oriented C++ Trilinos package for solving equality and inequality constrained
nonlinear programs (NLPs) using large-scale gradient-based optimization methods.
The primary focus of MOOCHO up to this point has been the development of active-
set successive quadratic programming (SQP) methods. MOOCHO was initially de-
veloped (under the name rSQP++) to support primarily reduced-space SQP (rSQP)
but other related types of optimization algorithms can also be developed. Using
MOOCHO, it is possible to specialize all of the linear-algebra computations and also
modify many other parts of the algorithm externally (without modifying default li-
brary source code). One feature of the MOOCHO framework is that it supports com-
pletely abstract linear algebra which allows sophisticated implementations on parallel
distributed-memory supercomputers but is not tied to any particular linear algebra

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy under Contract DE-AC04-
94AL85000.

3

library (although adapters to a few linear algebra libraries are available). In addition,
MOOCHO contains adapters to support massively parallel simulation-constrained op-
timization through Thyra Model Evaluator interface. Access to a great deal of linear
solver technology in Trilinos is available through the Stratimikos package.

This document provides a high-level overview of MOOCHO that describes the mo-
tivation for MOOCHO, the basic mathematical notation used in MOOCHO, the al-
gorithms that MOOCHO implements, and what types of optimization problems are
appropriate to be solved by MOOCHO. More detailed documentation on how to
install MOOCHO, how to define NLPs, and how to run MOOCHO algorithms is
provided in the companion MOOCHO Reference Manual [?].

4

Acknowledgment

I would like to thank by Ph.D. adviser Dr. Larry Biegler for is help in teaching me
optimization and helping to formulate MOOCHO back when it was called rSQP++.
I would also like to thank Carl Laird (now Dr. Laird) for helping on many different
aspects of the code and the algorithms.

5

6

Contents

0.1 Introduction . 11

0.2 Mathematical Background . 12

0.2.1 Nonlinear Program (NLP) Formulation . 12

0.2.2 Successive Quadratic Programming (SQP) 15

0.2.3 Reduced-Space Successive Quadratic Programming (rSQP) 17

0.2.4 General Inequalities, Slack Variables and Basis Permutations . . . 23

0.3 Basic Software Architecture of MOOCHO . 26

0.3.1 High-Level Object Diagram for MOOCHO. 26

0.4 Overview of NLP and Linear-Algebra Interfaces 28

0.4.1 Basic Application Requirements for Simulation-Constrained Op-
timization with MOOCHO . 28

0.4.2 Overview of AbstractLinAlgPack: Interfaces to Linear Alge-
bra Objects . 30

0.4.3 Overview of NLPInterfacePack: Interfaces to Nonlinear Pro-
grams . 35

0.5 Defining Optimization Problems . 38

0.6 Basic properties of MOOCHO Algorithms . 38

0.6.1 Solver options . 39

0.6.2 Algorithm Description and Iteration Output 40

0.6.3 Algorithm Summary and Timing . 41

0.6.4 Algorithm and NLP Testing and Validation 41

0.6.5 Algorithm Interruption . 44

0.7 Summary . 44

7

References 45

Appendix

.1 MOOCHO Equation Summary and Nomenclature Guide 45

8

List of Figures

1 UML object diagram : Course grained object diagram for MOOCHO . 27

2 UML class diagram : AbstractLinAlgPack, abstract interfaces to lin-
ear algebra . 31

3 UML class diagram : NLPInterfacePack, abstract interfaces nonlinear
programs . 36

9

10

0.1 Introduction

MOOCHO is an object-oriented C++ software package which implements gradient-
based algorithms for large-scale nonlinear programing. MOOCHO is designed to allow
the incorporation of many different algorithms and to allow external configuration of
specialized linear-algebra objects such as vectors, matrices and linear solvers (i.e.
through Thyra). Data-structure independence has been recognized as an important
feature missing in many optimization solvers [?].

While the MOOCHO framework can be used to implement many different types of
optimization methods (e.g. Generalized Reduced Gradient (GR) [?], Augmented La-
grangian (AL) [?], Successive Quadratic Programming (SQP) [?]) the main focus has
been SQP methods. Successive quadratic programming (SQP) and related methods
are attractive mainly because they generally require the fewest number of function
and gradient evaluations to solve a problem as compared to other optimization meth-
ods [?]. Another attractive property of SQP methods is that they can be adapted
to effectively exploit the structure of the underlying NLP [?]. A variation of SQP,
known as reduced-space SQP (rSQP), works well for NLPs where there are few de-
grees of freedom (see Section 0.2.1) and many constraints. Quasi-Newton methods
for approximating the reduced Hessian of the Lagrangian are also very efficient for
NLPs with few degrees of freedom. Another advantage of rSQP is that a decomposi-
tion for the equality constraints can be used which only requires solves with a basis
of the Jacobian of the constraints (see Section 0.2.3) and therefore can utilize very
specialized application-specific data structures and linear solvers. Therefore, rSQP
methods can be tailored to effectively exploit the structure of simulation-constrained
optimization problems and can show excellent parallel algorithmic scalability.

There is a distinction to be made between a user of MOOCHO and a developer of
MOOCHO, though it may it be narrow one in some cases. Here we define a user
as anyone who uses MOOCHO to solve an optimization problem using a pre-written
MOOCHO algorithm. A MOOCHO user can vary from someone who uses a pre-
developed interface to a modeling environment like AMPL [?] to someone who uses
MOOCHO to solve a discretized simulation-constrained optimization problem on a
massively parallel computer using specialized application-specific data structures and
linear solvers [?]. While the first type of user does not need to write any C++ code
and does not even need to know what C++ is, the latter type of sophisticated user
has to write a fair amount of C++ code. There are also many different types of use
cases of MOOCHO that lie in between these two extremes.

In the next section (Section 0.2), the basic mathematical structure of SQP methods
is presented. This presentation is intended to establish the nomenclature of MOO-
CHO for users and developers and to describe what algorithms MOOCHO actually
implements. The nomenclature that is established is key to being able to understand
the output from the MOOCHO algorithms. Appendix .1 contains a summary of this
notation. The basic software design of MOOCHO is then described in Section 0.3.

11

This is followed in Section 0.4 by a basic description of the linear algebra and NLP in-
terfaces in MOOCHO. These interfaces provide the foundation for allowing the types
of specialized data structures and linear solvers that an advanced user would use with
MOOCHO. Section 0.5 briefly discusses how one can define an NLP for MOOCHO
to solve and where to look for more information. Section 0.6 deals with the basics of
using MOOCHO to solve optimization problems and describes some of the common
properties shared by all MOOCHO algorithms.

0.2 Mathematical Background

0.2.1 Nonlinear Program (NLP) Formulation

MOOCHO can be used to solve NLPs of the general form:

min f(x) (1)

s.t. c(x) = 0 (2)

xL ≤ x ≤ xU (3)

where:

x, xL, xU ∈ X ,

f(x) : X → IR,

c(x) : X → C,
X ⊆ IR n,

C ⊆ IR m.

Above, we have been very careful to define vector spaces for the relevant vectors
and nonlinear operators. In general, only vectors from the same vector space are
compatible and can participate in linear-algebra operations. Mathematically, the
only requirement for the compatibility of real-valued vector spaces should be that the
dimensions match up and that the same inner products are used. However, having the
same dimension and the same inner product will not always be sufficient to allow for
the compatibility of vectors from different vector spaces in the implementation (e.g.
coefficients of parallel vectors can have different distributions to processes). Vector
spaces become important later when the NLP interfaces and the implementation of
MOOCHO is discussed in more detail in Section 0.4.

We assume that f(x) and cj(x) for j = 1 . . .m in (1)–(2) are nonlinear functions
with at least second-order continuous derivatives. The rSQP algorithms described

12

later only require first-order information (derivatives) for f(x) and cj(x). However,
these first derivatives can be provided by (directional) finite differences if missing.
The simple bound inequality constraints in (3) may have lower bounds equal to −∞
and/or upper bounds equal to +∞. The absences of some of these bounds can be
exploited by many of the algorithms.

It is very desirable for the functions f(x) and c(x) to at least be defined (i.e. no NaN

or Inf return values) everywhere in the set defined by the relaxed variable bounds
xL−δ ≤ x ≤ xU+δ. Here, δ (see the method max var bounds viol() in the Doxygen
documentation for the NLP interface) is a relaxation (i.e. wiggle room) that the user
can set to allow the optimization algorithm to compute f(x) and c(x) outside the
strict variable bounds xL ≤ x ≤ xU in order to compute finite differences and the
like. The SQP algorithms in MOOCHO will never evaluate f(x) and c(x) outside
the above relaxed variable bounds. This gives users a measure of control in how the
optimization algorithms interact with the NLP model.

The Lagrangian function L(λ, νL, νU) and the Lagrange multipliers (λ, νL, νU) for
this NLP are defined by

L(x, λ, νL, νU) = f(x) + λT c(x) + νTL (xL − x) + νTU (x− xU) ∈ IR, (4)

∇xL(x, λ, ν) = ∇f(x) +∇c(x)λ+ ν ∈ X , (5)

∇2
xxL(x, λ) = ∇2f(x) +

m∑

j=1

λ(j)∇2cj(x) ∈ X |X , (6)

where:
∇f(x) : X → X ,

∇c(x) =
[
∇c1(x) ∇c2(x) . . . ∇cm(x)

]
, : X → X|C,

∇2f(x) : X → X|X ,
∇2cj(x) : X → X|X , for j = 1 . . .m,
λ ∈ C,
ν ≡ νU − νL ∈ X .

Above, we use the notation λ(j) with the subscript in parentheses to denote the one-

based jth component of the vector λ and to differentiate this from a simple math
accent. Also, ∇c(x) : X → X|C is used to denote a nonlinear operator (the gradient
of the equality constraints ∇c(x) in this case) that maps from the vector space X to
a linear-operator space X|C where the range and the domain are the vector spaces
X and C respectively. The returned object A = ∇c ∈ X |C defines a linear operator
where q = Ap maps vectors from p ∈ C to q ∈ X . The transposed object AT defines
an adjoint linear operator where q = ATp maps vectors from p ∈ X to q ∈ C.

13

Given the definition of the Lagrangian and its derivatives in (4)–(6), the first- and
second-order necessary KKT optimality conditions [?] for a solution (x∗, λ∗, ν∗L, ν

∗
U)

to (1)–(3) are given in (7)–(13). There are four different categories of optimality
conditions: linear dependence of gradients (7), feasibility (8)–(9), non-negativity of
Lagrange multipliers for inequalities (10), complementarity (11)–(12), and curvature
(13).

∇xL(x∗, λ∗, ν∗) = ∇f(x∗) +∇c(x∗)λ∗ + ν∗ = 0 (7)

c(x∗) = 0 (8)

xL ≤ x∗ ≤ xU (9)

(νL)∗, (νU)∗ ≥ 0 (10)

(νL)∗(i)((xL)(i) − (x∗)(i)) = 0, for i = 1 . . . n (11)

(νU)∗(i)((x
∗)(i) − (xU)(i)) = 0, for i = 1 . . . n (12)

dT ∇2
xxL(x∗, λ∗) d ≥ 0, for all feasible directions d ∈ X . (13)

Sufficient conditions for optimality require that stronger assumptions be made about
the NLP (e.g. a constraint qualification on c(x) and perhaps conditions on third-order
curvature in case

dT ∇2
xxL(x∗, λ∗) d = 0

for d 6= 0 in (13).

To solve an NLP, an SQP algorithm must first be supplied an initial guess for the
unknown variables x0 and in some cases also initial guesses for the Lagrange multi-
pliers λ0 and ν0. The optimization algorithms implemented in MOOCHO generally
require that the initial guess x0 satisfy the variable bounds in (3), and if not, then
the elements of x0 can be forced in bounds before starting the algorithm.

14

0.2.2 Successive Quadratic Programming (SQP)

A popular class of methods for solving NLPs is successive quadratic programming
(SQP) [?]. An SQP method is equivalent, in many cases, to applying Newton’s
method to solve the optimality conditions represented by (7)–(8). At each Newton
iteration k for (7)–(8), the linear subproblem (also known as the KKT system) takes
the form

 W A

AT

 d

dλ

 = −

 ∇xL

c

 (14)

where:

d = xk+1 − xk ∈ X ,

dλ = λk+1 − λk ∈ C,
W = ∇2

xxL(xk, λk) ∈ X |X ,

A = ∇c(xk) ∈ X |C,
c = c(xk) ∈ C.

The Newton matrix in (14) is known as the KKT matrix. By substituting dλ =
λk+1−λk into (14) and moving λk to the right-hand-side, this linear system becomes
equivalent to the optimality conditions of the following QP.

min gTd+ 1/2d
TWd (15)

s.t. ATd+ c = 0 (16)

where:

g = ∇f(xk) ∈ X .

The advantage of the QP formulation over the Newton linear system formulation is
that inequality constraints can be directly added to the QP and a relaxation can be
defined to allow for infeasible subproblems, which yields the following QP.

min gTd+ 1/2d
TWd+M(η) (17)

s.t. ATd+ (1− η)c = 0 (18)

xL − xk ≤ d ≤ xU − xk (19)

0 ≤ η ≤ 1 (20)

15

where:

M(η) ∈ IR→ IR.

Near the solution of the NLP, the set of optimal active constraints for (17)–(20) will
be the same as the optimal active-set for the NLP in (1)–(3) [?, Theorem 18.1].

The relaxation of the QP shown in (17)–(20) is only one form of a relaxation but has
some essential properties. For example, the solution η = 1 and d = 0 is always feasible
by construction. However, the solution η = 1 and d = 0 is of little practical use since
it results in zero steps. The penalty function M(η) is either linear or quadratic where

if ∂M(η)
∂η
|η=0 is sufficiently large then an unrelaxed solution (i.e. η = 0) will be obtained

if a feasible region for the original QP exists. For example, the penalty term may
take a form such as M(η) = ηM̃ or M(η) = (η+ 1/2η

2)M̃ where M̃ is a large constant
often called “big M”. The default QP solver in MOOCHO, QPSchur [?], is careful
not to allow the ill-conditioning associated with M̃ to impact the solution unless it is
needed for an infeasible QP.

Once a new estimate of the solution (xk+1, λk+1, νk+1) is computed, the error in the
optimality conditions (7)–(9) is checked. If these KKT errors are within some specified
tolerance, the algorithm is terminated with the optimal solution. If the KKT error
is too large, the NLP functions and gradients are then computed at the new point
xk+1 and another QP subproblem (17)–(20) is solved which generates another step d
and so on. This algorithm is continued until a solution is found or the algorithm runs
into trouble (there can be many causes for algorithm failure), or it is prematurely
terminated because it is taking too long (i.e. the maximum number of iterations or
maximum runtime is exceeded).

The iterates generated from xk+1 = xk + d are generally only guaranteed to converge
to a local minimum to the first-order KKT conditions when close to the solution.
Therefore, globalization methods are used to insure (given a few, sometimes strong,
assumptions are satisfied) the SQP algorithm will converge to a local minimum from
remote starting points. One popular class of globalization methods are line search
methods. In a line search method, once the step d is computed from the QP subprob-
lem, a line search procedure is used to find a step length α such that xk+1 = xk + αd
gives sufficient reduction in the value of a merit function φ(xk+1) < φ(xk). A merit
function is used to balance a trade-off between minimizing the objective function f(x)
and reducing the error in the constraints c(x). A commonly used merit function is
the `1 (21) where µ is a penalty parameter that is adjusted to insure descent along
the SQP step xk + αd for α > 0.

φ`1(x) = f(x) + µ||c(x)||1 (21)

An alternative line search based on a “Filter” has also been implemented which gener-
ally performs better and does not require the maintenance of a penalty parameter µ.

16

Other globalization methods such as trust region (using a merit function or the filter)
can also be applied to SQP but no trust region method is currently implemented in
MOOCHO.

Because SQP is essentially equivalent to applying Newton’s method to the optimality
conditions, it can be shown to be quadratically convergent near the solution of the
NLP [?]. It is this fast rate of convergence that makes SQP the method of choice for
many applications. However, there are many theoretical and practical details that
need to be considered. One difficulty is that in order to achieve quadratic convergence
the exact Hessian of the Lagrangian W is needed, which requires exact second-order
information ∇2f(x) and ∇2cj(x), j = 1 . . .m. For many NLP applications, second
derivatives are not readily available and it is too expensive and/or inaccurate to
compute them using finite differences. Other difficulties with SQP include how to
deal with an indefinite projected Hessian. Also, for large problems, the full QP
subproblem in (17)–(20) can be extremely expensive to solve directly. These and
other difficulties have motivated the research of large-scale decomposition methods
for SQP. One class of these methods is reduced-space (or reduced Hessian) SQP, or
rSQP for short. RSQP methods are discussed in more detail in the next section.

0.2.3 Reduced-Space Successive Quadratic Programming (rSQP)

In a reduced-space SQP (rSQP) method, the full-space QP subproblem (17)–(20) is
decomposed into two smaller subproblems that, in many cases, are easier to solve. To
see how this is done, first a null-space decomposition [?, Section 18.3] is computed for
some linearly independent set of the linearized equality constraints Ad ∈ X |Cd where
cd(x) ∈ Cd ∈ IR r are the decomposed equality constraints and cu(x) ∈ Cu ∈ IR (m−r)

are the undecomposed equality constraints and

c(x) =

 cd(x)

cu(x)

 ∈ Cd×Cu =⇒ ∇c(xk) =

[
∇cd(xk) ∇cu(xk)

]
=
[
Ad Au

]
∈ X |(Cd×Cu).(22)

Above, the vector space C = Cd × Cu denotes a blocked vector space (also known as
a product space) with a dimension which is the sum of the constituent vector spaces
|C| = |Cd| + |Cu| = r + (m − r) = m. This decomposition is defined by a null-space
linear operator Z and a linear operator Y with the following properties:

Z ∈ X |Z s.t. (Ad)
TZ = 0

Y ∈ X |Y s.t.
[
Y Z

]
is nonsingular

(23)

where:

Z ⊆ IR (n−r)

Y ⊆ IR r.

17

It is important to distinguish the vector spaces Z and Y from the the linear operators
Z and Y . The null-space linear operator Z ∈ X |Z is a linear operator that maps
vectors from the null-space space u ∈ Z to vectors in the space of the unknowns
v = Zu ∈ X . The linear operator Y ∈ X |Y is a linear operator that maps vectors
from the space u ∈ Y to vectors in the space of the unknowns v = Y u ∈ X .

In many presentations of reduced-space SQP, the linear operator Y is referred to as
the “range-space” linear operator since several popular choices of this linear operator
form a basis for the range space of Ad. However, note that the linear operator Y need
not be a true basis linear operator for the range-space of Ad in order to satisfy the
non-singularity property in (23). For this reason, here the linear operator Y will be
referred to as the “quasi-range-space” linear operator to make this distinction.

By using (23), the search direction d can be broken down into d = (1− η)Y py +Zpz,
where py ∈ Y and pz ∈ Z are the known as the quasi-normal (or quasi-range space)
and tangential (or null space) steps respectively. By substituting d = (1−η)Y py+Zpz
into (17)–(20) we obtain the quasi-normal (24) and tangential (25)–(27) subproblems.
In (25), ζ ≤ 1 is a damping parameter which can be used to insure descent of the
merit function φ(xk+1 + αd).

Quasi-Normal (Quasi-Range-Space) Subproblem

py = −R−1cd ∈ Y (24)

where: R ≡ [(Ad)
TY] ∈ Cd|Y (nonsingular via (23)).

Tangential (Null-Space) Subproblem (Relaxed)

min (gr + ζw)Tpz + 1/2p
T
z [ZTWZ]pz +M(η) (25)

s.t. Uzpz + (1− η)u = 0 (26)

bL ≤ Zpz − (Y py)η ≤ bU (27)

where:

gr ≡ ZTg ∈ Z
w ≡ ZTWY py ∈ Z

18

ζ ∈ IR

Uz ≡ [(Au)
TZ] ∈ Cu|Z

Uy ≡ [(Au)
TY] ∈ Cu|Y

u ≡ Uypy + cu ∈ Cu
bL ≡ xL − xk − Y py ∈ X
bU ≡ xU − xk − Y py ∈ X .

By using this decomposition, the Lagrange multipliers λd for the decomposed equality
constraints ((Ad)

Td+ cd = 0) do not need to be computed in order to produce steps
d = (1 − η)Y py + Zpz. However, these multipliers can be used to determine the
penalty parameter µ for the merit function [?, page 544] or to compute the Lagrangian
function. Alternatively, a multiplier free method for computing µ has been developed
and tested with good results [?]. In any case, it is useful to compute these multipliers
at the solution of the NLP since they give the sensitivity of the objective function to
those constraints [?, page 436]. An expression for computing λd can be derived by
applying (23) to Y T∇L(x, λ, ν) = 0 to yield

λd = −R−T
(
Y T (g + ν) + UT

y λu
)
∈ Cd. (28)

There are many details that need to be worked out in order to implement an rSQP al-
gorithm and there are opportunities for a lot of variability. There are some significant
decisions that need to be made such as how to compute the null-space decomposition
that defines the matrices Z, Y , R, Uz and Uy; and how the reduced Hessian ZTWZ
and the cross term w in (25) are calculated (or approximated).

There are several different ways to compute decomposition matrices Z and Y that
satisfy (23) [?]. For small-scale rSQP, an orthonormal Z and Y (ZTY = 0, ZTZ = I,
Y TY = I) can be computed using a QR factorization of Ad [?]. This decomposition
gives rise to rSQP algorithms with many desirable properties. However, using a QR
factorization when Ad is of very large dimension is prohibitively expensive. MOOCHO
currently does not implement a orthonormal QR decomposition but one can be added
at some point if needed. Other choices for Z and Y have been investigated that
are more appropriate for large-scale rSQP. Methods that are more computationally
tractable are based on a variable-reduction decomposition [?]. In a variable-reduction
decomposition, the variables are partitioned into dependent xD and independent xI
sets

xD ∈ XD (29)

xI ∈ XI (30)

19

x =

 xD

xI

 ∈ XD ×XI (31)

(32)

where:

XD ⊆ IRr

XI ⊆ IRn−r

such that the Jacobian of the constraints AT is partitioned as shown in (33) where C
is a square, nonsingular linear operator known as the basis matrix. The variables xD
and xI are also called the state and design (or controls) variables [?] in some contexts
or the basic and nonbasic variables [?] in other contexts. What is important about
this partitioning of variables is that the xD variables define the selection of the basis
matrix C, nothing more. Some types of optimization algorithms give more significance
to this partitioning of variables (for example, in MINOS [?] the basic variables are
also variables that are not at an active bound) however no extra significance can be
attributed here.

This basis selection is used to define a variable-reduction null-space matrix Z in (34)
which also determines Uz in (35).

Variable-Reduction Partitioning

AT =

 (Ad)

T

(Au)
T

 =

 C N

E F

 (33)

where:

C ∈ Cd|XD (nonsingular)

N ∈ Cd|XI
E ∈ Cu|XD
F ∈ Cu|XI .

Variable-Reduction Null-Space Matrix

Z ≡

 −C−1N

I

 (34)

Uz = F − E C−1N (35)

20

There are many choices for the quasi-range-space matrix Y that satisfy (23). Two
relatively computationally inexpensive choices are the coordinate and orthogonal de-
compositions shown below.

Coordinate Variable-Reduction Null-Space Decomposition

Y ≡

 I

0

 (36)

R = C (37)

Uy = E (38)

Orthogonal Variable-Reduction Null-Space Decomposition

Y ≡

 I

NTC−T

 (39)

R = C(I + C−1NNTC−T) (40)

Uy = E − FNTC−T (41)

The orthogonal decomposition (ZTY = 0, ZTZ 6= I, Y TY 6= I) defined in (34)–(35)
and (39)–(41) is more numerically stable than the coordinate decomposition defined
in (34)–(35) and (36)–(38) and has other desirable properties in the context of rSQP
[?].

Solves with R in (40) are performed using the Sherman-Morrison-Woodbury formula
[?] which gives

R−1 = (I −D S−1 DT)C−1 (42)

where D = −C−1N ∈ XD|XI and S = I+DTD ∈ XI |XI are explicitly computed, and
the symmetric positive definite matrix S is factored using a dense Cholesky method.
Therefore, applying R−1 only requires a solve with the basis matrix C along with
back-solving with the factor of S. However, the nI linear solves needed to form
D = −C−1N and the O((n − r)2r) dense linear algebra required to compute DTD

21

can dominate the cost of the algorithm for NLPs with larger numbers of degrees of
freedom (n− r).
For larger (n−r) if adjoint solves with CT are available, the coordinate decomposition
(ZTY 6= 0, ZTZ 6= I, Y TY 6= I) defined in (34)–(35) and (36)–(38) is preferred
because it is cheaper but the downside is that it is also more susceptible to problems
associated with a poor selection of dependent variables and ill-conditioning in the
basis matrix C that can result in greatly degraded performance and even failure of an
rSQP algorithm. See the MOOCHO option quasi range space matrix in Section
0.6.1 for selecting between the orthogonal and the coordinate decompositions.

It is also important to note that MOOCHO can be used to solve non-equality-
constrained optimization problems (m = 0) and square nonlinear equations (m = n).
A non-equality-constrained optimization problem is handled by using Z = I and
Y = {empty}. A square nonlinear problem is handled using Z = {empty} and
Y = I. MOOCHO configures simpler algorithms in these two cases.

Another important decision is how to compute the reduced Hessian ZTWZ. For
many NLPs, second derivative information is not available to compute the Hessian
of the Lagrangian W directly. In these cases, first derivative information can be
used to approximate the reduced Hessian B ≈ ZTWZ using quasi-Newton methods
(e.g. BFGS) [?]. When (n − r) is small, B is small and cheap to update. Under
the proper conditions the resulting quasi-Newton, rSQP algorithm has a superlinear
rate of local convergence (even using w = 0 in (25)) [?]. When (n − r) is large,
limited-memory quasi-Newton methods can be used, but the price one pays is in
only being able to achieve a linear rate of convergence (with a small rate constant
hopefully). For some classes of NLPs, good approximations of the Hessian W are
available and may have specialized properties (i.e. structure) that makes computing
the exact reduced Hessian B = ZTWZ computationally feasible (i.e. see NMPC in
[?]). See the option quasi newton in Section 0.6.1. Other options include solving
for system with the exact reduced Hessian B = ZTWZ iteratively (using CG for
instance) which only requires matrix-vector products with W which can be computed
efficiently using automatic differentiation (for instance) in some cases [?]. However,
MOOCHO currently does not have any such algorithms implemented at this time.

In addition to variations that affect the convergence behavior of the rSQP algorithm,
such as null-space decompositions, approximations used for the reduced Hessian and
many different types of merit functions and globalization methods, there are also
many different implementation options. For example, linear systems such as (24) can
be solved using direct or iterative solvers and the reduced QP subproblem in (25)–(27)
can be solved using a variety of methods (active set vs. interior point) and software
[?].

22

0.2.4 General Inequalities, Slack Variables and Basis Permu-
tations

Up to this point, only simple variable bounds in (3) have been considered and the

SQP and rSQP algorithms have been presented in this context. However, the actual

underlying NLP may include general inequalities and take the form

min f̆(x̆) (43)

s.t. c̆(x̆) = 0 (44)

h̆L ≤ h̆(x̆) ≤ h̆U (45)

x̆L ≤ x̆ ≤ x̆U (46)

where:

x̆, x̆L, x̆U ∈ X̆
f̆(x) : X̆ → IR

c̆(x) : X̆ → C̆
h̆(x) : X̆ → H̆
h̆L, h̆L ∈ H̆
X̆ ∈ IR n̆

C̆ ∈ IR m̆

H̆ ∈ IR m̆I .

NLPs with general inequalities are converted into the standard form by the addition of

slack variables s̆ (see (50)). After the addition of the slack variables, the concatenated

variables and constraints are then permuted (using permutation matrices Qx and

Qc) according to the current basis selection into the ordering in (1)–(3). The exact

mapping from (43)–(46) to (1)–(3) is

x = Qx

 x̆

s̆

 (47)

xL = Qx

 x̆L

h̆L

 (48)

xU = Qx

 x̆u

h̆u

 (49)

c(x) = Qc

 c̆(x̆)

h̆(x̆)− s̆

. (50)

23

Here we consider the implications of the above transformation in the context of rSQP
algorithms.

Note if Qx = I and Qc = I that the matrix ∇c takes the form

∇c =

[
∇c̆ ∇h̆

−I
]

(51)

One question to ask is how the Lagrange multipliers for the original constraints can be
extracted from the optimal solution (x, λ, ν) that satisfies the optimality conditions
in (7)–(13)? First, consider the linear dependence of gradients optimality condition
for the NLP formulation in (43)–(46)

∇x̆L̆(x̆∗, λ̆∗, λ̆I
∗
, ν̆∗) = ∇f̆(x̆∗) +∇c̆(x̆∗)λ̆∗ +∇h̆(x̆∗)λ̆I

∗
+ ν̆∗ = 0. (52)

To see how the Lagrange multiples λ∗ and ν∗ can be used to compute λ̆∗, λ̆I
∗

and ν̆∗

one simply has to substitute (47) and (50) with Qx = I and Qc = I, for instance,
into (7) and expand as follows

∇xL(x, λ, ν) = ∇f +∇cλ+ ν

=

[
∇f̆
0

]
+

[
∇c̆ ∇h̆

−I
][

λc̆
λh̆

]
+

[
νx̆
νs̆

]

=

[
∇f̆ +∇c̆λc̆ +∇h̆λh̆ + νx̆

−λh̆ + νs̆

]
. (53)

By comparing (52) and (53) it is clear that the mapping is λ̆ = λc̆, λ̆I = λh̆ = νs̆
and ν̆ = νx̆. For arbitrary Qx and Qc it is also easy to perform the mapping of the
solution. What is interesting about (53) is that it says that for general inequalities
h̆j(x̆) that are not active at the solution (i.e. (νs̆)(j) = 0), the Lagrange multiplier for
the converted equality constraint (λh̆)(j) will be zero. This means that these converted
inequalities can be eliminated from the problem and not impact the solution (which
is what one would have expected). Zero multiplier values means that constraints will
not impact the optimality conditions or the Hessian of the Lagrangian.

The basis selection shown in (22) and (31) is determined by the permutation matrices
Qx and Qc and these permutation matrices can be partitioned as

Qx =

[
QxD

QxI

]
(54)

Qc =

[
QcD

QcU

]
. (55)

24

A valid basis selection can always be determined by simply including all of the slacks
s̆ in the full basis and then finding a sub-basis for ∇c̆. To show how this can be
done, suppose that ∇c̆ is full column rank and the permutation matrix (Q̆x)T =[

(Q̆xD)T (Q̆xI)
T
]

selects a basis C̆ = (∇c̆)T (Q̆xD)T . Then the basis selection for

the transformed NLP (with Qc = I) given by

Qx =

Q̆xD

I

Q̆xI

 (56)

C =

[
(Q̆xD∇c̆)T
(Q̆xD∇h̆)T −I

]
(57)

N =

[
(Q̆xI∇c̆)T
(Q̆xI∇h̆)T

]
(58)

could always be used regardless of the properties or implementation of ∇h̆.

Notice that basis matrix in (57) is lower block triangular with non-singular blocks on
the diagonal. It is therefore straightforward to solve for linear systems with this basis
matrix. In fact, the direct sensitivity matrix D = C−1N takes the form

D = −
[

(Q̆xD∇c̆)−T (Q̆xI∇c̆)T
(Q̆xD∇h̆)T (Q̆xD∇c̆)−T (Q̆xI∇c̆)T − (Q̆xI∇h̆)T

]
. (59)

Note that if the forward sensitivities (Q̆xD∇c̆)−T (Q̆xI∇c̆)T are computed up front then
there is little extra cost in forming this decomposition after the addition of general
inequality constraints. The structure of (59) is significant in the context of active-set
QP solvers that solve the reduced QP subproblem in (25)–(27) using a variable-
reduction null-space decomposition. When an implicit adjoint method is used, a row
of D corresponding to a general inequality constraint only has to be computed if the
slack for the constraint is at a bound. Also note that the above transformation does
not increase the total number of degrees of freedom of the NLP since n−m = n̆− m̆.
All of this means that adding general inequalities to a NLP imparts little extra cost
for an active-set rSQP algorithm if the forward/direct sensitivity method is used or
if these constraints are not active when using the adjoint method.

For reasons of stability and algorithm efficiency, it may be desirable to keep at least
some of the slack variables out of the basis and this can be accommodated also but
is more complex to describe. For general NLPs solved in serial, MOOCHO provides
support for general inequality constraints and will automatically add slack variables
and perform the needed basis permutations and partitioning.

Most of the steps in an SQP algorithm do not need to know that there are general
inequalities in the underlying NLP formulation but some steps may, such as global-
ization methods and basis selection computations. Therefore, those steps in an SQP

25

algorithm that need access to this information are allowed more detailed access of the
underlying NLP in a limited manner.

Now that the basic mathematical context for MOOCHO is in place, we move on to a
description of the basic software infrastructure for MOOCHO.

0.3 Basic Software Architecture of MOOCHO

MOOCHO is implemented in C++ using advanced object-oriented software engineer-
ing principles. However, using MOOCHO to solve certain types of NLPs does not
require any deep knowledge of object-orientation or C++. By copying and modi-
fying example programs it should be possible for a non-C++ expert to implement
and solve many different NLPs using MOOCHO. However, solving more advanced
NLPs which utilize specialized application-specific data structures and linear solvers
does require more detailed knowledge of C++ and some knowledge of object orienta-
tion. Although, the included example applications should provide a straightforward
road map for getting started with such an application. For simulation-constrained
optimization based on parallel Epetra1-compatible data structures, using MOOCHO
requires almost know deep knowledge of MOOCHO’s interfaces at all.

0.3.1 High-Level Object Diagram for MOOCHO

There are many different ways to present MOOCHO. Here, we take a top down
approach.

Figure 1 shows a high-level object diagram of a MOOCHO application, ready to solve
a user-defined NLP. The NLP object aNLP is created by the user and defines the func-
tions and gradients for the NLP to be solved. Closely associated with the NLP object
is a BasisSystem object. The BasisSystem object is used to specify and special-
ize the implementation of the basis matrix C. This BasisSystem object is used by
variable-reduction null-space decompositions. Each NLP object is expected to sup-
ply a BasisSystem object. The NLP and BasisSystem objects collaborate with the
optimization algorithm though a set of abstract linear-algebra interfaces. By creat-
ing a specialized NLP subclass (and the associated linear algebra and BasisSystem

subclasses) an advanced user can fully take over the implementation of all of the ma-
jor linear-algebra computations in a MOOCHO algorithm. This includes having full
freedom to choose the data structures for all of the vectors and the matrices A, C,
N , W and how nearly every linear-algebra operation is performed. This also includes
the ability to use fully transparent parallel linear algebra on a parallel computer even
though none of the core MOOCHO code has any concept of parallelism. The linear

1Epetra is a Trilinos package for distributed-memory vectors and matrices.

26

aNLP

aClient

aBasisSystem

: MoochoSolver

: NLPAlgo

: AlgorithmStep

aDecompositionSystem

: NLPAlgoState

: IterQuantity

aNLPAlgoConfig

Figure 1. UML object diagram : Course grained object
diagram for MOOCHO

algebra objects associated with the NLP and BasisSystem objects define the founda-
tion for every major computation in a simulation-constrained optimization (SCOPT)
algorithm. The exact requirements of the application and the details of the NLP and
linear algebra interfaces that satisfy these requirements are discussed in Section 0.4. A
complete infrastructure for parallel simulation constrained optimization is supported
through the MOOCHO/Thyra adapters described in the MOOCHO Reference Man-
ual [?]. Directly interacting with the MOOCHO linear algebra and NLP interfaces
is not recommended. Instead, users are strongly encouraged to define there SCOPT
NLPs through Thyra.

Once a user has developed NLP and BasisSystem classes (i.e. indirectly using Thyra

and Thyra::ModelEvaluator) for their specialized application, an NLP object can
be passed on to a MoochoSolver object. The MoochoSolver class is a convenient
“facade” (see [?]) that brings together many different components that are needed to
build a complete optimization algorithm in a way that is transparent to the user. The
MoochoSolver object will instantiate an optimization algorithm (given a default or a
user-defined configuration object) and will then solve the NLP, returning the solution
(or partial solution on failure) to the NLP object itself. Figure 1 also shows the course
grained layout of a MOOCHO algorithm. An advanced user can solve even the most
complex specialized NLP without needing to understanding how these algorithmic
objects work together to implement an optimization algorithm. One only needs to
understand the algorithmic framework in order to tinker with the optimization algo-

27

rithms themselves. Understanding the underlying algorithmic framework is crucial
for algorithm developers through.

While MOOCHO offers complete flexibility to solve many different types of specialized
NLPs in diverse application areas such as dynamic optimization and control (see [?])
and PDEs (see [?]) it can also be used to solve more generic NLPs such as are
supported by modeling systems like GAMS [?] or AMPL [?]. For serial NLPs which
can compute explicit Jacobian entries for A, all that a user needs to do is to create
a subclass of NLPSerialPreprocessExplJac and define the problem functions and
derivatives. For these types of NLPs, a default BasisSystem subclass is already
defined which can use one of a number of different dense or sparse direct linear
solvers to implement all of the required functionality. A simple example NLP that
derives from NLPSerialPreprocessExplJac is described in the MOOCHO Reference
Manual [?].

0.4 Overview of NLP and Linear-Algebra Inter-

faces

All of the high-level optimization code in MOOCHO is designed to allow arbitrary
implementations of the linear-algebra objects. It is the NLP object that defines the
basic foundation for all of the linear algebra used by a SCOPT optimization algorithm.
The NLP object accomplishes this by exposing a set of abstract linear algebra objects.
Before the specifics of the NLP and linear algebra interfaces are described, the specific
requirements for SCOPT optimization algorithms are described in Section 0.4.1. This
is followed by the descriptions of the linear algebra and NLP interfaces in Sections
0.4.2 and 0.4.3 respectively.

0.4.1 Basic Application Requirements for Simulation-Constrained
Optimization with MOOCHO

The requirements for large-scale gradient-based SCOPT optimization algorithms im-
plemented in MOOCHO can broken down into three different levels: direct SCOPT,
adjoint SCOPT, and full-Newton SCOPT. These three levels represent different levels
of intrusiveness and functionality from the underlying application that are used the
implement the NLP.

The most basic level of requirements are for direct SCOPT methods. This level
only requires forward linear solves with the basis matrix for specific right-hand-side
vectors. Most applications that utilize an exact Newton-type method for solving
the simulation problem can compute the solutions to these linear systems. Both the
orthogonal and the coordinate variable-reduction null-space decompositions can be

28

Optimization
level

Application requirements
(additive between levels)

Direct SCOPT

Evaluation of objective: x ∈ X → f ∈ IR
Evaluation of constraints residual: x ∈ X → c ∈ C
Evaluation of objective gradient: x ∈ X → ∇f ∈ X
Evaluation of direct sensitivity matrix: D = −C−1N ∈ XD|XI
Evaluation of Newton step: py = −C−1c(x) ∈ XD

Adjoint SCOPT

Ability to perform mat-vec products:
p = Aq, q = AT q, for q ∈ C, p ∈ X
Ability to solve linear systems:
p = C−1q, q = C−T q, for q ∈ Cd, p ∈ XD

Full-Newton SCOPT
Ability to perform mat-vec products:
p = Wq, for q ∈ X , p ∈ X

Table 1. Minimum Application Requirements for lev-
els of invasiveness for Simulation-Constrained Optimization
(SCOPT).

29

implemented with just the quantities D = −C−1N and py = C−1c. In addition, many
different types of globalization methods can also be used (both line search and trust
region methods complete with second-order corrections for the constraints).

The next level of requirements is for adjoint SCOPT methods. This level requires the
ability to perform mat-vec products and linear solves with the non-transposed and
transposed basis C and non-basis N matrices with arbitrary vectors. More efficient
and robust optimization algorithms can be implemented using this functionality. For
example, the ability to solve for transposed systems with the basis matrix C pro-
vides the ability to compute estimates for the Lagrange multipliers λ and the ability
to compute reduced gradients at a cost independent of the number of optimization
parameters.

The highest level of requirements is for full-Newton SCOPT methods. The minimum
requirements for these methods is the ability to compute mat-vec products with an
approximation of the Hessian of the Lagrangian W . MOOCHO currently does not
implement a full-Newton (i.e. full-space) SQP method.

The last set of requirements for SCOPT methods is the requirements on vectors.
There is a great diversity of specialized vector or array operations that optimization
methods must perform. This difficult set of requirements is handled by a design
for vector reduction/transformation operators (RTOp) which is described in [?] and
mentioned in Section 0.4.2.

Note that this set of requirements satisfies all the requirements of the SCOPT opti-
mization interfaces described in [?].

0.4.2 Overview of AbstractLinAlgPack: Interfaces to Linear
Algebra Objects

The linear algebra interfaces described in this section serve two roles. The first role is
to abstract the linear algebra objects associated with the NLP interface such as the
vector objects for the unknowns x, the residual of the constraints c and the gradient of
the objective function ∇f ; and the matrix objects for the gradients of the constraints
A, the Hessian of the Lagrangian W and the variable-reduction matrices C, N , E
and F . The second role of the linear algebra interfaces is to abstract objects that are
specific to the optimization algorithms such as for quasi-Newton approximations for
the Hessian and the reduced Hessian of the Lagrangian. The objects from the latter
group are obviously dependent on objects from the former group in various ways.
This latter role greatly increases the complexity and functionality of these interfaces.

Figure 2 shows a UML class diagram of the basic linear algebra abstractions. The
foundation for all the linear algebra is a vector space. A vector space object is rep-
resented though an abstract interface called VectorSpace . A VectorSpace object

30

create_member() : VectorMutable
create_members(in num_vecs : signed int) : MultiVectorMutable
is_compatible(in : VectorSpace) : bool
inner_prod(in x : Vector, in y : Vector) : double

dim

VectorSpace

apply_reduction(in op, in ..., inout reduct_obj)
sub_view(in : Range1D) : Vector

Vector

apply_transformation(in op, in ..., inout reduct_obj)
sub_view(in : Range1D) : VectorMutable

VectorMutable

space

Mp_StM()
Vp_StMtV()
Mp_StMtM()

MatrixOp

Mp_StMtMtM()

MatrixSymOp V_InvMtV()
M_StInvMtM()
M_StMtInvM()

MatrixOpNonsing

M_StMtInvMtM()

is_pos_def : bool

MatrixSymOpNonsing

space_cols

space_rows

set_basis(in Gc, in Px, in Pc, out C, out D)
select_basis(inout Gc, out Qx, out Qc, out C, out D)

BasisSystemPerm

update_basis(in Gc, out C, out D, out ...)

BasisSystem

Permutation

D

C

P_var

P_equ

Gc

«creates»

apply_reduction(in op, in ..., inout reduct_obj)
sub_view(in rows : Range1D, in cols : Range1D) : MultiVector

MultiVector

apply_transformation(in op, in ..., inout reduct_obj)
sub_view(in rows : Range1D, in cols : Range1D) : MultiVectorMutable

MultiVectorMutable

1

0..1

Figure 2. UML class diagram : AbstractLinAlgPack, ab-
stract interfaces to linear algebra

primarily acts as an “abstract factory” [?] and creates vectors from the vector space
using the create member() method. VectorSpace objects can also be used to check
for compatibility using the is compatible() method. Every VectorSpace object
has a dimension. Therefore a VectorSpace object can not be used to represent an
infinite-dimensional vector space. Every vector space object is also equipped with
an scalar (i.e. inner) product that is used to introduce scaling into the problem as
described in [?]. Just because two vectors from different vector spaces have the same
dimension (and the same inner product) does not automatically imply that the im-
plementations will be compatible. For example, distributed parallel vectors may have
the same global dimension but the vector elements may be distributed to proces-
sors differently (we say that they have different “maps”) and are therefore not easily
compatible in the RTOp sense. This is an important concept to remember.

Vector implementations are abstracted behind interfaces. The vector interface is bro-
ken up into two levels: Vector and VectorMutable . The Vector interface is an
immutable interface where vector objects can not be changed by the client. The
VectorMutable interface extends the Vector interface in allowing clients to change
the elements in the vector. These vector interfaces are very powerful and allow the

31

client to perform many different types of operations. The foundation of all vector
functionality is the ability to allow clients to apply user-defined RTOp operators to
perform arbitrary reductions and transformations (see the method apply op(...)).
The ability to write these types of user-defined operators is critical to the implemen-
tation of advanced optimization algorithms [?]. A single RTOp application method is
the only method that a vector implementation is required to provide (in addition to
some trivial methods such as returning the vector space object) which makes it fairly
easy to add a new vector implementation. In addition to allowing clients to apply
RTOp operators, the other major feature is the ability to create arbitrary subviews
of a vector (using the sub view() methods) as abstract vector objects. This is an
important feature in that it allows the optimization algorithm to access the subvec-
tors associated with the dependent (i.e. state) and independent (i.e. design) variables
separately (in addition to any other arbitrary range of vector elements). Support for
subviews is provided by default by every vector implementation through default view
subclasses (see the class VectorMutableSubview) that rely only on the RTOp applica-
tion methods. The last bit of major functionality is the ability of the client to extract
an explicit view of a subset of the vector elements. This is needed in a few parts
of an optimization algorithm for such tasks as dense quasi-Newton updating of the
reduced Hessian in a serial setting and the implementation of the compact LBFGS
matrix in a distributed parallel setting. Aside from vectors being important in their
own right, vectors are also the major type of data that is communicated between
higher-level interfaces such as linear operators (i.e. matrices) and function evaluators
(i.e. the NLP interface).

The basic matrix (i.e. linear operator) interfaces are also shown in Figure 2. The
MatrixOp interface is for general rectangular matrices. Associated with any Matrix-

Op object is a column space and a row space shown as space cols and space rows

respectively in the figure. Since column and row VectorSpace objects have a fi-
nite dimension, this implies that every matrix object also has finite row and column
dimensions. Therefore, these matrix interfaces can not be used to represent infinite-
dimensional linear operators. The column and row spaces of a matrix object identify
the vector spaces for vectors that are compatible with the columns and rows of the
matrix respectively. For example, if the matrix A is represented as a MatrixOp object
then the vectors y and x would have to lie in the column and row spaces respectively
in order to perform the matrix-vector product y = Ax. Note that despite name, a
MatrixOp object does not provide any type of efficient access to matrix elements. If
explicit matrix elements are required, then the matrix object can support other de-
fined matrix interfaces in order to extract the elements in a sparse (see the interfaces
MatrixExtractSparseElements and MatrixConvertToSparse) or dense (see the
interfaces MatrixOpGetGMS...) format.

These matrix interfaces go beyond what most other abstract matrix/linear-operator
interfaces have attempted. Other abstract linear-operator interfaces only allow the
forward applications of y = Ax or the transpose (adjoint) y = ATx for vector-vector
mappings. In addition to this basic functionality, every MatrixOp object can pro-

32

vide arbitrary subviews as MatrixOp objects through the sub view(...) methods.
These methods have default implementations based on default view subclasses which,
fundamentally, is supported by the ability to take arbitrary subview of vectors. This
ability to create these subviews is critical in order to access the basis matrices in
(33) given a Jacobian object Gc for ∇c. These matrix interfaces also allow much
more general types of linear-algebra operations. The MatrixOp interface allows the
client to perform level 1, 2 and 3 BLAS operations (see [???] for a discussion of the
convention for naming functions for linear-algebra operations)

B = α op(A) + B

y = α op(A)x+ βy

C = α op(A) op(B) + βC.

One of the significant aspects of these linear-algebra operations is that an abstract
MatrixOp object can appear on the left-hand-side. This adds a whole set of issues
(i.e. multiple dispatch) that are not present in other linear-algebra interfaces.

The matrix interfaces assume that the matrix operator or the transpose of the matrix
operator can be applied. Therefore, a correct MatrixOp implementation must be able
to perform the transposed as well as the non-transposed operation. This requirement
is important when the NLP interfaces are discussed later.

Of all of the functionality in the MatrixOp interface, the only pure virtual method
is the method for the level-2 BLAS operation for matrix-vector multiplication. All
other methods have reasonable default implementations based on this one method.
Therefore, generating a new concrete MatrixOp subclass is usually fairly easy. If
the default implementations of some of the other methods are found to be inefficient
in important cases, then they can be overridden to provide better, more specialized
implementations. This design allows for a pay-as-you-go approach to developing
implementations of linear algebra objects and this philosophy applies to all of the
linear algebra interfaces in AbstractLinAlgPack as well.

Several specializations of the MatrixOp interface are also required in order to im-
plement an advanced optimization algorithm. All symmetric matrices are abstracted
by the MatrixSymOp interface. This interface is required in order for the operation
C = α op(B) op(A) op(BT) + βC to be guaranteed to maintain the symmetry of the
matrix C. Note that a symmetric matrix requires that the column and row spaces be
the same.

The specialization MatrixOpNonsing is for nonsingular square matrices that can be
used to solve for linear systems. As a result, the level-2 and level-3 BLAS operations

33

y = op(A−1)x

C = α op(A−1) op(B)

C = α op(B) op(A−1)

are supported. The solution of linear systems represented by these operations can
be implemented in a number of different ways. A direct factorization followed by
back solves or alternatively a preconditioned iterative solver (i.e. GMRES or some
other Krylov subspace method) could be used. Or, a more specialized solution process
could be employed which is tailored to the special properties of the matrix (i.e. banded
matrices).

The last major matrix interface MatrixSymOpNonsing is for symmetric nonsingular
matrices. This interface allows the implementation of the operation C = α op(B) op(A−1) op(BT)
and guarantees that C will be a symmetric matrix.

Figure 2 shows two other specializations of the MatrixOp interface that have not
been discussed yet, MultiVector and MultiVectorMutable. A multi-vector is special
kind of matrix where access the rows, columns and/or diagonals may be permitted
as Vector and VectorMutable views. The primary role for a multi-vector object is
the creation of tall, thin matrices where each column vector is accessible. It is these
types of VectorMutable objects that are created by the create members(num vecs)

method on VectorSpace . The row space for these types of MultiVectorMutable

MatrixOp objects are assumed to be small, serial vector spaces in all cases. The
ability of a VectorSpace object to create MultiVectorMutable objects with an
arbitrary number of columns implies that every VectorSpace object can create other
small serial VectorSpace objects of arbitrary dimension. In order to directly allow
this functionality, the method small vec spc fcty() (not shown) returns a factory
object for creating these vector spaces. Since MultiVector is a type of MatrixOp ,
it can be passed into all of the level-3 BLAS methods on MatrixOp and MatrixOp-

Nonsing . By passing a MultiVectorMutable object (from the correct vector space)
as the target object for any of these linear algebra operations guarantees that the
operation will be supported since it can always be performed, column by column,
using the level-2 BLAS methods.

A major part of an rSQP algorithm, based on a variable-reduction null-space de-
composition, is the selection of a basis. The fundamental abstraction for this task is
the BasisSystem interface (as first introduced in Figure 1). The update basis()

method takes the rectangular Jacobian Gc (∇c) and returns a MatrixOpNonsing ob-
ject for the basis matrix C. This interface assumes that the variables are already
sorted according to (31). For many applications, the selection of the basis is known

34

a priori (e.g. simulation-constrained optimization). For other applications, it is not
clear what the best basis selection should be. For the latter type of application, the
basis selection can be performed on-the-fly and result in one or more different basis
selections during the course of an optimization algorithm. The BasisSystemPerm

specialization allows the optimization algorithm to either ask the basis system object
for a good basis selection (select basis()) or can tell the basis system object what
basis to use (set basis()). The selection of dependent xD and independent xI vari-
ables and the selection of the decomposed cd(x) and undecomposed cu(x) constraints
is represented by Permutation objects. The protocol for handling basis changes is
somewhat complicated and is beyond the scope of this discussion. Note that the
BasisSystemPerm interface is optional and does not have to be supported by an
application.

It is likely that a future version of MOOCHO might use a set of linear algebra in-
terfaces that is directly based on the new Thyra interfaces that are part of Trilinos.
If this happens, many of these interfaces will be phased out and/or transitioned to
Thyra.

0.4.3 Overview of NLPInterfacePack: Interfaces to Nonlinear
Programs

The hierarchy of NLP interfaces that all MOOCHO optimization algorithms are based
on is shown in Figure 3. These NLP interfaces act primarily as evaluators for the
functions and gradients that define the NLP. These interfaces represent the various
levels of intrusiveness into an application model.

The base-level NLP interface is called NLP which defines the nonlinear program.
An NLP object defines the vector spaces for the variables X and the constraints C as
VectorSpace objects space x and space c respectively. The NLP interface allows ac-
cess to the initial guess of the solution x0 and the bounds xL and xU as Vector objects
x init, xl and xu respectively. This interface also provides access to Permutation

objects P var and P var for permutation matrices Qx and Qc, respectively. These
matrices are used to permute from the original order of variables and constraints to
the current basis selection (see Section 0.2.4).

The NLP interface allows clients to evaluate just the zero-order quantities f(x) ∈ IR
and c(x) ∈ C as scalar and VectorMutable objects respectively. This is useful
since many different steps in an optimization algorithm do not require derivatives
for the problem functions. Examples include several different line search and trust
region globalization methods (i.e. Filter and exact merit function). Non-gradient-
based optimization methods could also be implemented through this interface but
smoothness and continuity of the variables and functions is assumed by default. Note
that this interface is the same as a NAND (nested analysis and design) approach if
there are no equality constraints (i.e. removed using nonlinear elimination). The NLP

35

calc_f(in x)
calc_c(in x)
calc_f_breve(in x)
calc_c_breve(in x)

x_init : Vector
xl : Vector
xu : Vector

NLP

calc_Gf(in x)

NLPObjGrad

calc_Gc(in x)

NLPFirstOrder
calc_point(in x, out f, out c, out Gf, out py, out D)

NLPDirect

calc_HL(in x, in lambda)

NLPSecondOrder

space_xspace_c

AbstractLinAlgPack:: BasisSystem

basis_sys

AbstractLinAlgPack:: VectorSpace

AbstractLinAlgPack:: Permutation

P_var
P_equ

get_next_basis(inout ...) : bool
get_basis(out ...)
set_basis(in ...)

NLPVarReductPerm

Figure 3. UML class diagram : NLPInterfacePack, ab-
stract interfaces nonlinear programs

interface can also be used for unconstrained optimization (i.e. |C| = m = 0) or for a
system of nonlinear equations (i.e. |X | = n = |C| = m).

As mentioned in Section 0.2.4, some parts of an optimization algorithm can benefit
greatly from knowing about general inequality constraints and become less effective
when these constraints are converted to equalities using slack variables. These steps in
the optimization algorithm can compute the quantities c̆(x̆) and h̆(x̆) independently
and access the bounds h̆L and h̆U through the NLP interface as well.

The next level of NLP interface is NLPObjGrad . This interface simply adds the ability
to compute the gradient of the objective function ∇f(x) ∈ X as a VectorMutable

object Gf. For many applications, it is far easier and less expensive to compute
derivatives for the objective function than it is for the constraints. That is why this
functionality is considered more general than sensitivities for the constraints2 and is
therefore higher in the inheritance hierarchy than interfaces the include derivatives
for ∇c.
Derivatives for the constraints ∇c are broken up into two separate interfaces based on

2It turns out that the assumption that getting derivatives of the objective function is easier than
getting derivatives for the constraints is not true in general, especially for simulation-constrained
optimization problems. Therefore, these interfaces will likely be reworked at some point in the future
to better reflect reality.

36

the requirements for direct SCOPT verses adjoint SCOPT methods. These interfaces
represent the different capabilities of the underlying application code.

For applications that can only satisfy the requirements for direct SCOPT there is the
NLPDirect interface. As the name implies, the NLPDirect interface only requires
the direct sensitivity matrix D = −C−1N and the solution to the Newton linear
systems py = C−1c. With usually minor modifications, almost any application code
that uses a Newton method for the forward solution can be used to implement the
NLPDirect interface.

The NLPFirstOrder interface is for applications can implement the requirements for
adjoint SCOPT methods. This NLP interface assumes that the application can, at the
very least, form and maintain a MatrixOp object Gc for the gradient of the constraints
∇c. Recall that this implies that mat-vec products with both ∇cT and ∇c. Note
that operations of the form p = ∇cT q can always be approximated using directional
finite differences (i.e. p = ∇cT q ≈ limε→0(c(x+ εq)− c(x))/ε)) but operations of the
form q = ∇c p can not. Therefore, this interface can not simply be approximated
using finite differences. However, the reverse mode of AD can generally be used to
implement products of the form q = ∇c p in an efficient manner without having to
actually form the matrix object∇c first [?]. In order to fully support the requirements
for adjoint SCOPT methods, a NLPFirstOrder object must supply a BasisSystem

object that may be specialized for the application’s Gc matrix object.

The highest level of requirements for full-Newton SCOPT methods is satisfied by the
NLPSecondOrder interface. This NLP interface allows the optimization algorithm to
compute a MatrixSymOp matrix object HL for the Hessian of the Lagrangian W =
∇2
xxL = ∇2f(x) +

∑m
j=1 λj∇2cj(x). How this Hessian matrix object is used can

vary greatly. This matrix object can be used to compute the exact reduced Hessian
B = ZTWZ or can be used to form the full KKT matrix (in some cases). Many other
possibilities exist but the best approach will be very much application dependent.
MOOCHO currently does not support a full-space SQP algorithm and therefore there
are currently no facilities for solving linear system with the KKT matrix W . However,
in the past, this interface has been used within MOOCHO to compute the exact
reduced Hessian and use it instead of a quasi-Newton approximation.

Figure 3 shows another NLP interface that has not been discussed yet, NLPVar-

ReductPerm . This interface allows the NLP object and MOOCHO optimization
algorithm to collaborate in changing the basis and defining new permutations for the
variables and the constraints shown as the permutation matrices P var and P var on
the NLP interface respectively. This interface is considered a mix-in interface that con-
crete NLP subclasses should only support if changing the basis selection is possible. If
an NLP subclass supports the NLPVarReductPerm and NLPFirstOrder interfaces, it
is also required that the BasisSystem object exposed by the NLPFirstOrder inter-
face also support the BasisSystemPerm interface. A carefully designed collaboration
between the NLPVarReductPerm and BasisSystemPerm interfaces, which is medi-
ated by a MOOCHO algorithm, makes it possible for the basis selection to change

37

during the course of an algorithm. This functionality will generally only be support-
able by NLPs that provide explicit Jacobian entries and use direct linear solvers.
For most specialized applications, the selection of the basis is fixed and unchangeable
(e.g. simulation-constrained optimization). Therefore, an NLP subclass does not have
to support the NLPVarReductPerm or BasisSystemPerm interfaces to be used with
MOOCHO.

In summary, the NLP , NLPDirect , NLPFirstOrder and NLPSecondOrder interfaces
represent the four different levels of invasiveness to applications for optimization.
The NLP interface without equality constraints can used to implement basic NAND
(i.e. black-box) optimization algorithms while on the other extreme the NLPSecond-

Order interface can be used to implement fully-coupled invasive SCOPT methods
with access to second derivatives3.

0.5 Defining Optimization Problems

Optimization problems for MOOCHO can be defined in primarily two different ways.
First, a general NLP with explicit first-derivative entries can be defined by creating a
subclass of NLPInterfacePack::NLPSerialPreprocessExplJac. This type of NLP
can only be solved using a single process (i.e. no MPI parallelism) and a sparse direct
linear solver must be used (i.e. MA28). For this type of NLP, there is not need for
the user to partition the variables into dependent variables (i.e. state variables) and
independent variables (i.e. optimization parameters).

The second type of NLP that can be solved using MOOCHO are simulation-constrained
NLPs where the basis section is known up front. For these types of NLPs, it is recom-
mended that the NLP be specified through the Thyra::ModelEvaluator interface (or
the EpetraExt::ModelEvaluator interface for Epetra-based applications) and this
provides access to a significant linear solver capability through Trilinos. These types
of NLPs can be solved in single program multiple data (SPMD) mode in parallel on
a massively parallel computer. This is the recommended interface for SCOPT appli-
cations to adopt and this will most likely drive the development of MOOCHO in the
near future.

See the MOOCHO Reference Manual [?] for examples of these different types of NLPs.

0.6 Basic properties of MOOCHO Algorithms

All MOOCHO algorithms share a few different properties that are described below.

3Again, in theory these interfaces can support full-space Newton SQP methods but this has not
been implemented in MOOCHO at this point

38

0.6.1 Solver options

Various options can be set in a flexible and user friendly format. Using this for-
mat, options are clustered into different “options groups”. An example option file
containing many off the typical options that a user would set is shown below:

begin_options

options_group NLPSolverClientInterface {

max_iter = 20;

max_run_time = 2.0; *** In minutes

opt_tol = 1e-2;

feas_tol = 1e-7;

* journal_output_level = PRINT_NOTHING;

* journal_output_level = PRINT_BASIC_ALGORITHM_INFO;

journal_output_level = PRINT_ALGORITHM_STEPS;

* journal_output_level = PRINT_ACTIVE_SET;

* journal_output_level = PRINT_VECTORS;

* journal_output_level = PRINT_ITERATION_QUANTITIES;

* null_space_journal_output_level = DEFAULT;

* null_space_journal_output_level = PRINT_ACTIVE_SET;

* null_space_journal_output_level = PRINT_VECTORS;

null_space_journal_output_level = PRINT_ITERATION_QUANTITIES;

journal_print_digits = 10;

* check_results = true; *** (costly?)

check_results = false; *** [default]

calc_conditioning = true;

calc_matrix_norms = true; *** (costly?)

calc_matrix_info_null_space_only = true; *** (costly?)

}

options_group DecompositionSystemStateStepBuilderStd {

* null_space_matrix = AUTO; *** Let the solver decide [default]

null_space_matrix = EXPLICIT; *** Compute and store D = -inv(C)*N explicitly

* null_space_matrix = IMPLICIT; *** Perform operations implicitly with C, N

* range_space_matrix = AUTO; *** Let the algorithm decide dynamically [default]

* range_space_matrix = COORDINATE; *** Y = [I; 0] (Cheaper computationally)

range_space_matrix = ORTHOGONAL; *** Y = [I; -N’*inv(C’)] (more stable)

}

options_group NLPAlgoConfigMamaJama {

* quasi_newton = AUTO; *** Let solver decide dynamically [default]

quasi_newton = BFGS; *** Dense BFGS

* quasi_newton = LBFGS; *** Limited memory BFGS

* line_search_method = AUTO; *** Let the solver decide dynamically [default]

* line_search_method = NONE; *** Take full steps at every iteration

* line_search_method = DIRECT; *** Use standard Armijo backtracking

line_search_method = FILTER; *** [default] Use the Filter line search method

}

end_options

These and many other options may be included in the Moocho.opt file. See the
MOOCHO Reference Manual [?] for the listing of all of the valid options with some
documentation. Note that the mathematical description itself in Section 0.2 is critical
in understanding and interpreting these options.

A skeleton for a Moocho.opt file can be created using the generate-opt-file.pl

Perl script [?]. This script can be run from the source tree and it also gets installed

39

in $TRILINOS INSTALL DIR/tools/moocho.

Documenting MOOCHO is a major task and this issue is discussed in more detail in
the next section.

0.6.2 Algorithm Description and Iteration Output

One of the greatest challenges in developing software of any kind is in maintaining
documentation. This is especially a problem with software developed in a research
environment. Without good documentation, software can be very difficult to under-
stand and maintain. In addition to the Doxygen generated documentation, which is
very effective in describing interfaces and other specifications, there is also a need to
document the more dynamic parts of an optimization algorithm. Highly flexible and
dynamic software, which MOOCHO is designed to be, can be very hard to understand
just by looking at the source code and static documentation.

A problem that often occurs with numerical research codes is that the algorithm
described in some paper is not what is actually implemented in the software. This can
cause great confusion later on when someone else tries to maintain the code. Some
of these discrepancies are only minor implementation issues while others seriously
impact the behavior of the algorithm.

Primarily, two features have been implemented to aid in the documentation of a
MOOCHO algorithm: the configured algorithm description can be printed out before
the algorithm is run, and information is output about a running algorithm.

The first feature is that a printout of a configured MOOCHO algorithm can be pro-
duced by setting the option MoochoSolver{print algo=true}, where this is short-
hand for the print algo option in the MoochoSolver options group. With this option
set to true, the algorithm description is printed to the MoochoAlgo.out file before
the algorithm is run. The algorithm is printed using Matlab-like syntax. The identi-
fier names for iteration quantities used in this printout are largely the same as used
in the source code. There is a very careful mapping between the names used in the
mathematical notation of the SQP algorithm and the identifiers used in the source
code and algorithm printout. This mapping for identifiers is given in Appendix .1.
Each iteration quantity name in the algorithm printout has ’ k’, ’ kp1’ or ’ km1’

appended to the end of it to designate the iterations (k), (k + 1) or (k − 1) respec-
tively, for which the quantity was calculated. Much of the difficulty in understanding
an algorithm, whether in mathematical notation or implemented in source code, is in
knowing precisely what a quantity represents. By using a careful mapping of names
and identifiers, it is much easier to understand and maintain numerical software.

This algorithm printout is put together by the NLPAlgo object (through functionality
in the base class IterationPack::Algorithm) as well as the AlgorithmStep objects.
Each step is responsible for printing out its own part of the algorithm. The code for

40

producing this output is included in the same source file as each of the do step(...)

functions for each AlgorithmStep subclass. Therefore, this documentation is de-
coupled from other steps as much as the implementation code is, and maintaining
the documentation is more urgent since it is in the same source file. An example of
this printout for an rSQP algorithm generated by the “MamaJama” configuration4

is shown in [?]. Each Step object is given a name that other steps refer to it by
(to initiate minor loops for instance). Also, the name of the concrete subclass which
implements each step is included as a guide to help track down the implementations.

For a more detailed look at the output files MoochoAlgo.out and MoochoJournal.out

see the MOOCHO Reference Manual [?].

0.6.3 Algorithm Summary and Timing

In addition to the more detailed information that can be printed to the file Moocho-

Journal.out, summary information about each MOOCHO iteration is printed to the
file MoochoSummary.out. Also, if the option MoochoSolver{algo timing=true} is
set, then this file will also get a summary table of the run-times and statistics for each
step. These timings are printed out in a tabular format giving the time, in seconds,
each step consumed for each iteration as well as the sum of the times of all the steps.
See the MOOCHO Reference Manual [?] for an example of a MoochoSummary.out

file.

This timing information can be used to determine where the bottlenecks are in the
algorithm for a particular NLP. Of course, for very small NLPs the runtime is dom-
inated by overhead and not numerical computations, so timing of small problems is
not terribly interesting or useful.

0.6.4 Algorithm and NLP Testing and Validation

Many computations are performed in order to solve a nonlinear program (NLP) using
a numerical optimization method. If there is a significant error (programming bug or
excessive round-off) in any step of the computation, the numerical algorithm will not
be able to solve the NLP, or at least not to a satisfactory tolerance. When a user goes
to solve a NLP that the user has written and the optimization algorithm fails or the
solution found does not seem reasonable, the user is left to wonder what went wrong.
Could the NLP be coded incorrectly? Is there a bug in the optimization software that
has gone up till now undetected? For any non-trivial NLP or optimization algorithm
it is very difficult to diagnose such a problem, especially if the user is not an expert
in optimization. Even if the user is an expert, the typical investigative process is still

4The name MamaJama was used for the very first algorithm configuration class and was meant
to be a “do all” configuration class for active-set rSQP algorithms.

41

very tedious and time consuming.

Fortunately, it is possible to partially validate the consistency of the NLP implemen-
tation (i.e. gradients are consistent with function evaluations) as well as many of the
major steps of the optimization algorithm. Such tests can be implemented in a way
that the added cost (runtime and storage) is of only the same order as the compu-
tations themselves and therefore are not prohibitively expensive. There are several
possible sources for such errors. These sources of errors, from the most likely to the
least likely are:

1. Errors in the NLP implementation (e.g. bad derivatives)

2. Errors in the user specialized parts of the optimization algorithm (e.g. a bad
specialized BasisSystem object)

3. Errors in the core optimization code (e.g. errors in mathematics, programming
logic, or memory usage)

4. Or, errors in the compiler or runtime environment (e.g. excessive roundoff due
to overly aggressive compiler optimizations).

There are many ways to make a mistake in coding the NLP interface. For instance,
assuming the user’s NLP model is valid (i.e. continuous and differentiable), the user
may have made a mistake in writing the code that computes f(x), c(x), ∇f(x) and/or
∇c(x). Suppose the gradient of the constraints matrix ∇c is not consistent with c(x)
but only in some regions. The matrix ∇c may be used by a generic BasisSystem

object to find and factor the basis matrix C and therefore, the entire algorithm
would be affected. To validate ∇c, the entire matrix could be approximately com-
puted by finite differences of course and then compared to the ∇c computed by the
NLP interface, but this would be far too expensive in runtime (O(nm)) and storage
(O(nm)) costs for larger NLPs. Computing each individual component of the deriva-
tives ∇f and ∇c by finite differences is an option but it must be explicitly turned on
(see the option NLPFirstDerivTester{fd testing method=FD COMPUTE ALL}). As a
compromise, by default, directional finite differencing can be used to show that ∇c
is not consistent with c(x), but can not strictly prove that ∇c is completely correct.
This works as follows. The optimization algorithm asks the NLP interface to compute
∇ck at a point xk. Then, at the same point xk, for a random vector v, the matrix-
vector product ∇c(xk)v is approximated, using central finite differences for instance,
as ∇c(xk)v ≈ t1 = (c(xk+hv)−c(xk−hv))/2h where h ≈ 10−5 (where h can be set by
the user through the options in the options group CalcFiniteDiffProd). Then the
matrix-vector product t2 = ∇ckv would be computed using the ∇ck matrix object
computed by the NLP interface and the resultant vectors t1 and t2 are then com-
pared. Even if the user did an exemplary job of implementing the NLP interface, the
computed t1 and t2 vectors will not be exactly equal (i.e. t1 6= t2) due to unavoidable

42

round-off errors (and truncation errors in the finite-difference computation). There-
fore, we need some type of measure of how well t1 and t2 compare. For every such
test in MOOCHO there are defined an error tolerance error tol and warning toler-
ance warning tol that are adjustable by the user. Any relative error greater than
error tol will cause the optimization algorithm to be terminated with an error mes-
sage printed. Any relative error greater than warning tol will be printed to the
journal file to warn the user of some possible problems. For example, relative errors
greater than warning tol = 10−12 but smaller than error tol = 10−8 may concern
us, but the algorithm still may be able to solve the NLP. The finite-difference testing of
the NLP interface can be controlled by setting options in the NLPFirstDerivTester

and CalcFiniteDiffProd options groups and up to fourth-order central differences
are supported (and are the default), which yield very accurate derivatives in many
cases. Testing the NLP’s interface at just one point, such as the initial guess x0, is not
sufficient to validate the NLP interface. For example, suppose we have a constraint
c10(x) = x3

2 with ∂c10/∂x2 = 3x2
2. If the derivative was coded as ∂c10/∂x2 = 3x2 by

accident, this would appear exactly correct at the points x2 = 0 and x2 = 1 but would
not be correct for any other values of x2. Therefore, it is important to test the NLP
interface at every SQP iteration if one really wants to validate the NLP interface. Of
course, just because the NLP interface is consistent, does not mean it implements the
model the user had in mind, but this is a different matter. If the NLP is unbounded
or infeasible, the SQP algorithm will determine this (but the error message produced
by the algorithm may not be able to state exactly the cause of the problem).

Every major computation in a SQP algorithm can be validated, at least partially, with
little extra cost. For example, an interface that is used to solve for a linear system
x = A−1b such as the MatrixOpNonsing can be checked by computing q = Ax
and then comparing q to b. Computations can also be validated for the null-space
decomposition (see DecompositionSystemTester) and QP solver (see QPSolver-

RelaxedTester) objects. Since sophisticated users can come in and replace any of
these objects, it is a good idea to be able to test everything that can realistically
be tested whenever the correctness of the algorithm is in question or new objects
are being integrated and tested. Much of this testing code is already in place in
MOOCHO, but more is needed for more complete validation. The option NLPSolver-

ClientInterface{check results=true} will turn on all such runtime checks and,
with default settings, should be only increase the cost of the algorithm by a constant
factor, independent of the size of the problem.

Such careful testing and validation code can save lots of debugging time and also help
avoid reporting incorrect results which can be embarrassing in an academic research
setting or costly in a real-world setting. Testing and validation is no small matter and
should be taken seriously, especially in a dynamic environment with lots of variability
like MOOCHO.

43

0.6.5 Algorithm Interruption

All MOOCHO algorithms can be interrupted at any time while the algorithm is
running and result in a graceful termination, even for parallel runs with MPI. When
running in interactive mode (i.e. the user has access to standard in and standard
out in the console) then typing Ctrl-C will cause the algorithm to pause and allow
the user to enter termination criteria on the standard input stream. Or, a MOOCHO
algorithm can be interrupted without access to standard in or standard out (i.e. when
running in batch mode) by setting up an interrupt file. This feature allows the client to
terminate a MOOCHO algorithm at any time and still result in a graceful exit where
the current status of the solution is compiled and returned to the user (through the
NLP interface). See the MOOCHO Reference Manual [?] for more details.

0.7 Summary

MOOCHO currently implements several variates of reduced-space quasi-Newton suc-
cessive quadratic programming methods. MOOCHO is written in C++ and can be
used to address very large-scale optimization problems. MOOCHO is distributed
as part of the Trilinos [?] collection. Both general serial problems and massively
parallel simulation-constrained problems can be addressed with MOOCHO. Parallel
simulation-constrained problems can be represented through Thyra and can utilize a
great deal of the parallel (and serial) linear solver capability present through Trilinos.

44

.1 MOOCHO Equation Summary and Nomencla-

ture Guide

Standard NLP Formulation

min f(x)

s.t. c(x) = 0

xL ≤ x ≤ xU

where:

x, xL, xU ∈ X
f(x) : X → IR

c(x) : X → C
X ∈ IR n

C ∈ IR m

Lagrangian

L(x, λ, νL, νU) = f(x) + λT c(x)
+(νL)T (xL − x)
+(νU)T (x− xU)

∇xL(x, λ, ν) = ∇f(x) +∇c(x)λ+ ν

∇2
xxL(x, λ) = ∇2f(x) +

m∑

j=1

λj∇2cj(x)

where:
λ ∈ C
ν ≡ νU − νL ∈ X

Full-Space QP Subproblem

min gTd+ 1/2d
TWd+M(η)

s.t. ATd+ (1− η)c = 0

xL − xk ≤ d ≤ xU − xk

where:
d = xk+1 − xk ∈ X
g = ∇f(xk) ∈ X
W = ∇2

xxL(xk, λk) ∈ X |X
M(η) ∈ IR→ IR
A = ∇c(xk) ∈ X |C
c = c(xk) ∈ C

Null-Space Decomposition

Z ∈ X |Z s.t. (Ad)TZ = 0
Y ∈ X |Y s.t.

[
Y Z

]
nonsing

R ≡ [(Ad)TY] ∈ Cd|Y nonsing
Uz ≡ [(Au)TZ] ∈ Cu|Z
Uy ≡ [(Au)TY] ∈ Cu|Y
d = (1− η)Y py + Zpz

where:
pz ∈ Z ⊆ IR (n−r)

py ∈ Y ⊆ IR r

Quasi-Normal (Range-Space) Subproblem

py = −R−1cd ∈ Y

45

Tangential (Null-Space) Subproblem (Relaxed)

min gTqppz + 1/2p
T
z Bpz +M(η)

s.t. Uzpz + (1− η)u = 0

bL ≤ Zpz − (Y py)η ≤ bU

where:
gqp ≡ (gr + ζw) ∈ Z
gr ≡ ZT g ∈ Z
w ≡ ZTWY py ∈ Z
ζ ∈ IR
B ≈ ZTWZ ∈ Z|Z
Uz ≡ [(Au)TZ] ∈ Cu|Z
Uy ≡ [(Au)TY] ∈ Cu|Y
u ≡ Uypy + cu ∈ Cu

bL ≡ xL − xk − Y py ∈ X
bU ≡ xU − xk − Y py ∈ X

Variable-Reduction
Decompositions

AT =

[
(Ad)T

(Au)T

]
=

[
C N

E F

]

where:
C ∈ Cd|XD (nonsing)
N ∈ Cd|XI
E ∈ Cu|XD
F ∈ Cu|XI

Coordinate

Z ≡
[
−C−1N

I

]

Y ≡
[
I

0

]

R = C

Uz = F − EC−1N

Uy = E

Orthogonal

D ≡ −C−1N

Z ≡
[
D

I

]

Y ≡
[

I

−DT

]

R = C(I −DDT)
Uz = F +ED

Uy = E − FDT

Orthonormal (QR) Null-Space Decomposition

QTAd =

[
RT

0

]

where:
Q =

[
Y Z

]
∈ X |(Y × Z) (nonsingular)

46

.1.1 Mathematical Notation Summary and MOOCHO Iden-

tifier Mapping

Mathematical MOOCHO Description
Iteration

k ∈ I+ k Iteration counter for the SQP algorithm
NLP

n ∈ I+ n Number of unknown variables in x

m ∈ I+ m Number of equality constraints in c(x)
X ∈ IRn space x Vector space for x
C ∈ IRm space c Vector space for c(x)
x ∈ X x Unknown variables
xL ∈ X xl Lower bounds for variables
xU ∈ X xu Upper bounds for variables
f(x)|x ∈ IR f Objective function value at x
g ≡ ∇f(x) ∈ X Gf Gradient of the objective function at x
c(x)|x ∈ C c General equality constraints evaluated at x
A ≡ ∇c(x)|x ∈ X |C Gc Gradient of c(x), ∇c =

[
∇c1 . . . ∇cm

]

Lagrangian

λ ∈ C lambda Lagrange multipliers for c(x) = 0
ν ∈ X nu Lagrange multipliers (sparse) for the variable bounds
∇xL(xk, λk, νk)

∈ X
GL Gradient of the Lagrangian

W ≡
∇2
xxL(xk, λk)
∈ X |X

HL Hessian of the Lagrangian

SQP Step

d ∈ X d Full SQP step for the variables, d = (xk+1)+ − xk
η ∈ IR eta Relaxation variable for QP subproblem
Null-Space Decomposition

r ∈ I+ r Number decomposed equality constraints in cd
[1 : r] ∈ I2

+ con decomp Range for decomposed equalities cd = c(1:r)

[r + 1 : m] ∈ I2
+ con undecomp Range for undecomposed equalities cu = c(r+1:m)

Cd ∈ IRr space c

.sub space(

con decomp)

Vector space for decomposed equalities cd

Cu ∈ IR(m−r) space c

.sub space(

con undecomp)

Vector space for undecomposed equalities cu

47

cd = c(1:r) ∈ Cd c.sub view(

con decomp)

Vector of decomposed equalities

cu = c(r+1:m) ∈ Cu c.sub view(

con undecomp)

Vector of undecomposed equalities

Z ∈ IR(n−r) Z.space rows() Null space. Accessed from the matrix object Z.
Y ∈ IRr Y.space rows() Quasi-Range space. Accessed from the matrix object Y.
Z ∈ X |Z Z Null-space matrix for (∇cd)T ((∇cd)TZ = 0)
Y ∈ X |Y Y Quasi-range-space matrix for (∇cd)T ([Y Z] nonsingular)
R = [(∇cd)TY]

∈ Cd|Y
R Nonsingular: Equal to basis C for coordinate decompositions

Uz = [(∇cu)TZ]
∈ Cu|Z

Uz

Uy = [(∇cu)TY]
∈ Cu|Y

Uy

pz ∈ Z pz Tangential (null-space) step
Zpz ∈ X Zpz Tangential (null-space) contribution to d
py ∈ Y py Quasi-normal (quasi-range-space) step
Y py ∈ X Ypy Quasi-norm (quasi-range-space) contribution to d
gr = ZT∇f ∈ Z rGf Reduced gradient of the objective function
ZT∇L ∈ Z rGL Reduced gradient of the Lagrangian
w ≈ ZTWY py ∈ Z w Reduced QP cross term
B ≈ ZTWZ ∈ Z|Z rHL Reduced Hessian of the Lagrangian
Reduced QP Subproblem

gqp ≡ (gr + ζw)
∈ Z

qp grad Gradient for the Reduced QP subproblem

ζ ∈ IR zeta QP cross term damping parameter (descent for φ(x))
Global Convergence

α ∈ IR alpha Step length for xk+1 = xk + αd

µ ∈ IR mu Penalty parameter used in the merit function φ(x)
φ(x) : X → IR merit func nlp Merit function object that computes φ(x)
φ(x)|x ∈ IR phi Value of the merit function φ(x) at x
Variable Reduction Decomposition

[1 : r] ∈ I2
+ var dep Range for dependent variables xD = x(1:r)

[r + 1 : n] ∈ I2
+ var indep Range for independent variables xI = x(r+1:n)

Qx ∈ X |X P var Permuation for the variables for current basis
Qc ∈ C|C P equ Permuation for the constraints for current basis
XD ∈ IRr space x

.sub space(

var dep)

Vector space for dependent variables xD

48

XI ∈ IR(n−r) space x

.sub space(

var indep)

Vector space for independent variables xI

xD ∈ XD x.sub view(

var dep)

Vector of dependent variables

xI ∈ XI x.sub view(

var indep)

Vector of independent variables

C ≡ ∇Dcd(xk)T
≡ (AT)(1:r,1:r)

∈ Cd|XD

C Nonsingular Jacobian submatrix (basis) for de-
pendent variables xD and decomposed constraints
cd(x) at xk

N ≡ ∇Icd(xk)T
≡ (AT)(1:r,r+1:n)

∈ Cd|XI

N Jacobian submatrix for independent variables xI
and decomposed constraints cd(x) at xk

E ≡ ∇Dcu(xk)T

≡ (AT)(r+1:m,1:r)

∈ Cu|XD

E Jacobian submatrix for dependent variables xD
and undecomposed constraints cu(x) at xk

F ≡ ∇Icu(xk)T

≡ (AT)(r+1:m,r+1:n)

∈ Cu|XI

F Jacobian submatrix for independent variables xI
and undecomposed constraints cu(x) at xk

49

DISTRIBUTION:

2 MS 9018 Central Technical Files, 8944

2 MS 0899 Technical Library, 4536

50

v1.27

